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Abstract

The paper presents a field experiment for a low-cost strapdown-IMU/GPS combination, with data
postprocessing for the determination of 2-D components of position (trajectory), velocity and
heading. In the present approach we have neglected earth rotation and gravity variations, because of
the poor gyroscope sensitivities of our low-cost ISA (Inertial Sensor Assembly) and because of the
relatively small area of the trajectory. The scope of this experiment was to test the feasibility of an
integrated GPS/IMU system of this type and to develop a field evaluation procedure for such a
combination. Also a hardware synchronisation between GPS time and the IMU’s data acquisition
time scale is presented.
The authors briefly describe the IMU strapdown mechanisation procedure, the DGPS data
processings and the implementation of a suboptimal Linear Kalman Filter (LKF), with the system
linearization exemplified for the 2-D case.
Plots of test results, concerning the KF update for the carrier phase or pseudorange DGPS solutions,
made at regular epochs of integer seconds, as well as comparisons between the INS and the GPS
trajectory solutions are given. The results demonstrate the feasibility of our cost-effective IMU/GPS
integration, with accuracy improvements from ca. 20 m (IMU alone) toward the meter domain (for
the combination) depending on good GPS reception conditions. The precise carrier-phase DGPS
solution, with an accuracy in the cm domain, was used as reference for the strapdown-mechanized-
IMU’s performance evaluation.

I. Introduction

Since 1978 one has recognised the advantages of tightly-coupled GPS/INS (Global Positioning
System /Inertial Navigation System) systems [1]. The idea is to combine the advantage of the short-

term precision of INS and the long-term
stability of GPS. With the significant
decrease of inertial sensor prices [2, 3]
(micromachined accelerometers and rate
gyroscopes), the rapid increase of
computing power (permitting the on-line
approach applied to strapdown
navigation systems) and with the
tendency of using standard software for
such GPS/INS systems [1], one can look
forward for a much wider use of aided
GPS inertial navigation. The goal of this
paper is to present the results from a
field test with a combination of a low-
cost strapdown ISA (Inertial Sensor
Assembly) unit [4] with GPS aiding. A
central item has been the test of the
feasibility of a processing algorithm
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Fig. 1: The rover car and the stationary receiver on
the start point
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using a simplified linear Kalman filter [5, 6] with only 5 state-variables. A 2-D solution  of this type
benefits from the precision information of position, velocity and heading, derived from a reference
carrier-phase DGPS (Differential GPS) solution; a variety of simulations runs has been carried out
with two specific GPS  solutions (Pseudorange and carrier phase DGPS).
The study has also permitted to elaborate a field test methodology for IMU (Inertial Measurement
Unit) units. The tests have carried out with a car carrying on its roof a platform equipped with two
GPS-antennas and one IMU unit. There are neglected the g - variations and the Earth rotation rate,
because of the small dimensions of the test area (some 100×100 m), of the relative low car
velocities (about 5 m/s, that is about 18 km/h) and of the reduced rate sensitivity of the used
gyroscopes.
The mutual benefit of an INS/GPS combination should be the compensation of the IMU(INS) drift
and the coverage of long period unavailability  of the GPS [7] (in city environments, in tunnels, etc.)
or of imprecision caused by interference by  multipath reflections. By using an appropriate
suboptimal Kalman filter (KF), one can take advantage of a good dynamic description of the IMU,
combined with the unbiased observations of the available GPS data.
In the paper the INS/GPS measuring system is described. We also give an IMU strapdown
compensation algorithm (implemented also in an interactive version under Simulink - Matlab) and
the postprocessing solution for a reference navigation path, together with some alternative KF
simulations (observations provided every second and every 4 s respectively or with random GPS
updating).

II. Experiment description

In Fig. 1 the rover car is shown equipped with two GPS receiver antennas mounted on the car roof
on a wooden plate at a fixed distance of 1.40 m. One can see the ISA unit, rigidly fixed in the middle
of the platform. A stationary GPS receiver is used to generate the DGPS (Differential GPS)
solutions.
The GPS system permits the accurate computation of the position (carrier-phase DGPS) and the
velocity of the ISA’s centre of mass. One can also derive a heading reference from the GPS solution
and deliver it as update for the angular azimuth in the KF (normally furnished from the z-axis rate
gyroscope).

Fig. 2  View of the opened ISA
unit: the three-axial
accelerometer and a one-axis
gyroscope



This first test has been carried out on „Theresienwiese“ in Munich.
The ISA unit, of type iMAR  [4], uses a triaxial accelerometer realised by quartz micromachined
technology [8] and a triad of quartz vibrating rate gyroscopes [9], based on the Coriolis-force
principle.
The inertial sensors are mounted in an aluminium cube by iMAR 

 with an unique reference
mounting surface. Fig. 2 shows the opened cube, here mounted on a rotating platform for calibration
in our laboratory.
The analog signal furnished by the ISA unit is acquired via an A/D multiplexed conversion unit
(Type DAQPad - MIO - 16XE - 50 from NATIONAL INSTRUMENTS 

 [10]), with a 16 bit/channel
resolution. A sampling rate of 25 Hz was chosen; data are stored on a TOSHIBA 

 PC - Notebook in
binary or ASCII format files, with 8 columns: 3 channels of accelerometer data, 3 channels of
gyroscope data (the rotating rate information), one channel of the inertial-cube interior temperature
information and one channel with time-reference information (in analog form), necessary to assure
the synchronisation between the INS and the GPS systems.
In this starting phase of the experiment the synchronisation is carried out by simultaneous
continuous registration, on the 8-th channel (#7) of the data converter, of a time signal with 0.1 s
duration. It is derived from the standard PPS (one Pulse Per Second) output signal of a GPS receiver
(here, for comparison, derived from an ASHTECH  

 receiver, respectively from the rover TRIMBLE 


receiver). To realise also an absolute reference time scale, a supplementary 0.5 s asynchronous
signal is generated manually, at an arbitrarily observed GMT time, displayed on the GPS receiver
panel, and electronically superimposed to the same # 7 channel of the time reference (see Fig. 3).
The realised electronic (the monostable multivibrators, the logic OR and the attached LED displays -
for the PPS signal, respectively for the asynchronous one) is mounted in a small separate case (see
Fig. 4) and connected by coaxial cables to the PPS output signal (GPS receiver) and the input of the
8-th channel of the A/D converter.
Because of the great duration difference (5:1) between the two time signals one can automatically
detect any asynchronous event without difficulty. This enables an absolute marking of the inertial
data registration on the associated time scale.

Fig. 3  Time scale generated on
the 8-th channel of the inertial
data file (PPS synchronous and
asynchronous event signals)

Nevertheless one must take into account the absolute time difference between the recorded UTC
asynchronous event and the GPS-time reference SoW (Second of GPS Week) for the satellite
positioning solution. At the time of the experiment this difference was [11]:

GPS-time - GMT-time  = +12 s (i.e., at 14.05.1998 the GPS time was 12 s ahead of UTC ) .



In this 2-D experiment no initial alignment was carried out. The alignment is deduced in the course
of the experiment from the GPS
positioning data. Of course, one must take
into account a short initialisation phase of
about 10 to 15 min at the beginning of the
GPS session.

Fig. 4  View of the hardware for the
analog time signals (in the laboratory
experimentation phase, connected to a
Trimble GPS receiver)

III. IMU’s strapdown mechanisation

Using the calibration data for the inertial sensor assembly (bias, linear scale factors, gyroscopes
triad non-orthogonality) delivered from the manufacturer and the supplementary calibration
measurements made in our laboratory the error model of the inertial sensors is validated. The most
important measurements carried out in our laboratory are: the evaluation of the noise behaviour of
the inertial data sets, static accelerometer calibrations - to determine the supplementary non-linear
terms of the static transfer characteristics, considered only to degree 2 -, as well as the establishment
of the non-linear time and temperature behaviour of the accelerometer’s drift and scale factors and
the non-orthogonality of the accelerometer’s triad. The complex dependencies between the electrical
output signal u [V] of  an inertial sensor (here an accelerometer) and the specific forces f, the
elapsed time t and the temperature T  take the following analytical form:

u D H k k t k t k f k f k f k f k f= + + + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +0 01 02
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2cc cck f f k f f k T k T ,            (1)

where we used the following notation:

D = dead zone (under this threshold  one has no signal),
H = hysteresis,

0k = bias (a new value for each new use of the instrument),

01 02k k, =  drift coefficients (modelling the linear and the quadratic variations with time t,
respectively),

1 2 3k k k, , = coefficients of the polynomial approximation of the non-linear response
characteristic to the specific force along the sensible input axis,

1 2 3
f f f, , = specific forces, along the three input axes (denoted 1, 2 and 3),

12 13
no no,k k = coupling coefficients between the input axes, due to non-orthogonality,

12 13
cc cc,k k = cross - coupling coefficients,

41 42k k, =  coefficients of the polynomial dependence (linear and quadratic) of the sensor
output signal from temperature T



The inertial data are processed in a strapdown mechanisation [12], based on the following
expression for a one-component specific force in a body reference system (see Fig. 5, that explains
the forces

considered, acting upon the seismic mass
of the accelerometer), as a function of the
linear acceleration x

ba , the apparent

centripetal acceleration cf x
ba _  and the

corresponding axial component of the

static gravitational acceleration x
bg  (the

superscripts b denote the vector
components in the body reference system):

m x x
b

cf x
b

x
bf a a g_ _= + − .     (2)

The corresponding vectorial form (with
the specific force vector now denoted by a
and the correction terms of centripetal and
gravity acceleration expressed in the body
coordinate system) is:

b b
n
b na a v C g= − × + ⋅ωω .     (3)

with:
=ωω the angular velocity vector,
=vb the velocity vector, given in the

coordinate system b,
=Cb

n the rotation matrix from the local coordinate system n to the body coordinate system b.

Fig. 6  Flow-chart of the strapdown mechanisation
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Fig. 5  Specific force as a function of the acceleration
components along a reference system firmly attached
to the moving body (example for x - axis)
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In this approach we only take into account the apparent centrifugal forces and the tilt-induced static
accelerations (components of g assum ed to be constant). Neglected is the small Coriolis force
acting on the moving mass as a consequence of the rotation of the inertial sensors case.

Fig. 7 Strapdown
mechanisation solution
of the IMU
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a - x-axis body
acceleration
b - x-axis body velocity
c - x-axis velocity in the
pseudo-inertial
reference system
d - x-axis position in the
pseudo-inertial
reference system
e - y-axis body
acceleration
f - y-axis body velocity

g - y-axis velocity in the pseudo-inertial reference system
h - y-axis position  in the pseudo-inertial reference system
i - rotation rate about the z-axis
j - rotation angle ψ about the z-axis
k - x/y trajectory (only from inertial data)

As mentioned above we neglect the g - variations because of the relative small experimental area
and also the Coriolis force component resulting from the earth rotation (both of them because of
lack of sensitivity of the low-cost inertial sensor system).
The flow-chart of the algorithm is given in the Fig. 6. The program has been written in the Simulink
- Matlab language, which enables a transparent and interactive design of the whole diversity of
signals, also permitting an easy and rapid proof of the error model parameters.
In the Fig. 7 the inertial solution of the x/y trajectory, as well as the rotation angle ψ (about the z-
axis) are presented.

IV. GPS solution

The GPS solution was accurately determined by carrier phase DGPS data evaluation using OTF-
(On-The-Fly) techniques, processed with the commercial SPECTRA PRECISION GEOGENIUS 



software. Two separate solutions were computed, one for each pair of reference/rover receivers.
Each point of the resulting trajectory of the ISA’s centre of mass (plotted as reference in the Fig. 14)
represents a position solution, spaced regularly at 1 s intervals. Considered was the center point
between the two GPS antennas, matched with the centre of the inertial cube. The trajectory and the
rotation angle are determined consequently (as the arithmetic mean of successive positions of the
two rover antennas and as the rotation angle of the spatial vector defined by the two phase centres of
the mobile receiver antennas respectively).



Some remarks concerning the GPS solutions performed:

Because a standalone GPS receiver position solution only yields an accuracy/repeatability of some
tens of meters it is common to perform measurements with 2 receivers (or more) simultaneously.

Fig. 8  DGPS constellation with 2 rover antennas on top of the
car, showing the observables as well as the estimated difference
vectors between reference and rovers

Thereby one receiver is held stationary at a reference position A
nearby the planned trajectory of the second (moving) receiver B,
the so called rover. This is called DGPS. See Fig. 8 for the
constellation in this experiment with

[ ] [ ] T
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T
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By processing the simultaneous pseudorange measurements PR from the two receivers by the
double differencing technique, we can eliminate systematic time dependent errors like satellite and
receiver clock biases. We can reduce other effects too and avoid, in addition, problems with high
correlations in the parameter estimation process.
The double difference observable for pseudorange DGPS can be written:

( ) ( ) ε+−−−=−−−=∇∆ j
A

j
B

k
A

k
B

j
A

j
B

k
A

k
B

jk
AB SSSSPRPRPRPR               (4)

with: PR = pseudorange,
S = geometric distance between  receiver A,B and satellite j,k ,
ε = unmodeled errors (multipath, atmospheric effects) and noise.

The result of a least squares adjustment using these double difference observations provides
position differences or strictly speaking vector components ∆X, ∆Y, ∆Z in a geocentric Cartesian
coordinate system describing the vector between the reference and the rover receiver or rather
between their antennas. This technique using pseudoranges yields an accuracy/repeatability of about
1 meter for epochwise solutions in kinematic applications. Smoothing of the pseudoranges PR by
means of carrier phases can bring down this value to some decimeters.
For even higher accuracy of a few centimeters one has to compute the position differences using
carrier phase observations Φ: In contrast to pseudoranges PR, that are equivalent to distance
measurements between satellite and receiver, carrier phase measurements require the determination
of cycle ambiguities N, because at the measurement epoch only the received carrier phase (fractional
part of a cycle with λ ≅ 20 cm) and the change in the integer part (full cycles) are registered
(combined in Φ), while the full range remains unknown.
The double difference observable for carrier phase DGPS can be written:

( ) ( )( ) ε+−−−−=Φ−Φ−Φ−Φ=∇∆ jk
AB

j
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j
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k
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k
B

j
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j
B

k
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k
B

jk
AB NSSSS

c

f

0

             (5)

with: ( )j
A

j
B

k
A

k
B

jk
AB NNNNN −−−= double difference ambiguity,

Φ = carrier phase observable,
S = geometric distance between  receiver A,B and  satellite j,k ,
f = carrier frequency,
c0 = speed of light in vacuum,
ε = unmodeled errors (multipath, atmospheric effects) and noise.



For further information on GPS techniques see also [13, 14, 15].
Regarding the kinematic application we are again forced to get epochwise position solutions. Thus
in contrast to stationary case we cannot accumulate observations to get higher redundancy for the
estimation process which would allow us to determine these ambiguity parameters more easily.
Instead we have to resolve them "on-the-way" (on-the-fly). For high precision positions we have to
fix the ambiguity parameters (they are integers) in the position estimation process to their true
values. Because the true integer values cannot reliably be found by rounding the actual float values
from the least squares adjustment, they must be searched by statistical tests like χ2-tests on the
residuals of a position solution after introducing a set of possible double difference integer
ambiguities, or like FISHER-tests on the ratio between the best and the second best - from the
statistical point of view - position solution from different possible integer ambiguity sets. In the
software we used (SPECTRA PRECISION GEOGENIUS 

) the search is performed with a polynomial
approach (linear regression) of the residuals in order to increase the computational speed. The
search hyperspace of all possible ambiguity sets is defined by a 30σ interval for every  double
difference ambiguity around its float solution. When the "true" set of all (nsat-1) double difference
integer ambiguities is found, they are held fixed and the positions per epoch can be solved exactly .
For further information on DGPS and ambiguity resolution techniques see also [16, 17].
For comparison purposes the geocentric Cartesian coordinates are transformed into a local
projection to yield north, east and up components ∆N, ∆E, ∆U (≡-∆D) instead of ∆X, ∆Y, ∆Z.

Fig. 9  GPS solution of the
constant distance (1.40 m)
between the two rover
antennas (the greatest errors
are produced during the test
rides)

For a better insight into the
accuracy of the OTF-GPS
solutions we have plotted the
time evolution of the constant
baseline between the two
rover antenna centres, in
reality always 1.40 m,

determined from two independent GPS solutions. From Fig. 9 one can see maximal errors about  +/-
5 mm, also during the intervals of car movement. It should be noted that systematic errors affecting
both antennas in the same way, that may reach up to 1 cm, are neglected in such an analysis.

The precise carrier phase DGPS solution, as well as the pseudorange DGPS solution with a
precision in the meter domain, can also be used as a bias free observation in the Kalman filter.
One can derive from the GPS solution the approximate x-axis velocities, expressed in [m/s] as:

txtxtv x kk
∆−=

−
/)(

1
,              (6)

by considering the equal time-interval t∆ of the GPS solutions and determined each second
(similarly for the y component), or, more elegantly, by computing the time derivatives of the
smoothly interpolated trajectory.

upper brackets: moving phases

lower brackets: non-moving phases



Fig. 10  Comparison between the
GPS and INS solutions (both of
them given in a pseudo-inertial
reference  system)
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a - x-axis space: GPS solution
b - x-axis space: INS solution
c - rotation angle ψ : GPS
solution
d - rotation angle ψ : INS solution
e - y-axis space: GPS solution
f - y-axis space: INS solution
g - x/y trajectory: GPS solution
h – independent INS and GPS

trajectories

From the comparison between the
GPS and INS solutions, presented
in Fig. 10, one can see the good
match of the x/y trajectories and
the azimuth solutions (a detailed
comparison evidenced differences
of under one degree, after an
appropriate correct alignment).

One can see also the permanently decreasing match of the IMU - determined trajectory, because of
the continuously increasing unmodeled drift error components with time.

V. Integrated INS/GPS solution of the trajectory

To check the feasibility and the usefulness of the integration of our low-cost IMU with GPS, we
built several different Kalman filter configurations, all working in the 2-D (two-dimensional)
domain, taking into account the accurate carrier phase DGPS solution with an update every second -
as well as with some slower or a random epoch updating (every 4 s or randomly ( s4=σ )). A
further test was the use of the pseudorange DGPS solution. The INS(IMU) strapdown trajectory
solution, with short term precision, but long term drifts, is corrected either on-line or post-mission
by means of the bias-free observations furnished by the GPS aiding. We made also tests for aiding
every second.
We used a LKF (Linear Kalman Filter), with the IMU trajectory as reference. Because of the short
duration of our experiment, there are no noticeable temperature variations in the inertial sensor unit;
so we applied in this test only a coarse bias correction at the beginning, neglecting scale-factor
variations; the compensated inertial sensor drifts are modelled only as linear time variations. Of
course, the complete algorithm must consider both the non-linear shape of the transfer
characteristics of gyroscopes and accelerometers, as well as the polynomial time and temperature
dependencies of the drifts. It models the slow variable drifts as Gauss-Markov processes.



The local reference system NED (North, East, Down) (denoted here with n), in which the reference
trajectory of the LKF is established (as solution of the IMU with the strapdown mechanisation), can
be assumed for this test to be an inertial frame. The linearized solution is obtained by Taylor
expansion of the real non-linear trajectory model about the reference trajectory, retaining only the
first order term [5, 6].
From the non-linear plant and observation models, in the continuous-time domain:

& ( , , ) ~( )x f x u G u= + ⋅d t t

z h x= +( , ) ~( )t tνν ,              (7)

where ~( )u t ,  ~( )νν t  are the Gaussian white noise processes of the dynamic system, respectively of
the observation, we deduce [6]:

- the discrete time non-linear model:
k k kx f x w= +− −( ) ~

1 1

k k kz h x= +( ) $νν               (8)

(with k kN~ ~ ( , )w Q0 , k kN~ ~ ( , )νν 0 R ),
- the reference trajectory model (without noise):

k k d
∗

−
∗=x f x u( , )1 ,              (9)

- the linearized perturbed trajectory model:
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(with the definition of the perturbation from the nominal: δ k k kx x x= − ∗∆
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and the linearized observation model:
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For the derivation of the explicit forms of the above defined Jacobian matrices (the discrete

linearized state transition matrix: k
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), we are first considering the general three-dimensional form of a continuous

state equation system for a strapdown mechanisation of a body (materialised as a triad, also with all
lever-arm effects omitted), moving in the reference system n assumed to be inertial:
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where we denote:
n

x n y n z n
Ts s ss = [ ]_ _ _ , the position vector in the coordinate system n

n
x n y n z n

Tv = [v v v ]_ _ _ , the velocity vector, given in the coordinate system n

ΨΨ = [ ]φ θ ψ T , the Euler angles vector

b
nC = the rotation matrix from the body coordinate system b to the local coordinate

system n
E = the Euler angles differential equations matrix

b
x b y b z b

Ta a aa = [ ]_ _ _ , the acceleration vector, measured with respect to the body

coordinate system b



bωω = [ ]_ _ _x b y b z b
Tω ω ω , the angular velocity vector (of the body axes) with respect

to the inertial coordinate system.
The partial derivatives in eq. (10), the Jacobian matrix of the continuous, non-linear system of
equations takes the form:
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with the explicit terms for our 2-D case (with the chosen set of state variables
x = [ , , v , v , ]x
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The 2-D form of the continuous, linearized system matrix (evaluated at the discrete time moments
t t k= , the beginning of the sampling intervals) becomes:
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           (16)

We obtain the approximate transition matrix kΦΦ = ⋅F ∆te  [5], by assuming piecewise constancy of the
deterministic inertial sensor signals during the sampling interval and by retaining only the linear
term of the Taylor series:

kΦΦ ≅ I F+ ⋅ ∆ t            (17)
where ∆ t  represents the small sampling rate interval.

Fig. 11  Discrete Linear
Kalman Filter –
a block diagram

As we are observing here directly the states, the observation equation will be linear:
k k k kz H x= ⋅ + ~νν ,            (18)
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with the constant elements of the observation matrix kH . For the CUPT (Coordinate UPdaTe) the
matrix kH  has only zero or unit elements (the positions are directly observed by GPS), as can be
seen from the observation equations, written for the incremental state variables:
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A block diagram for the Kalman filter operation is given in Fig. 11.
The formula set of the linearized approximation equations of the discrete recursive Kalman filter
becomes [5]:

k k k
−

− −
+= ⋅δ δ$ $x x1 1ΦΦ (State Estimate Extrapolation)

k k k k
T

k
−

− −
+

− −= ⋅ ⋅ +P P Q1 1 1 1ΦΦ ΦΦ  (Covariance Estimate Extrapolation)
      ----------------------------------------------

k k k
T

k k k
T

kK P H H P H R= ⋅ ⋅ ⋅ +− − −( ) 1 (Filter Gain computation)

k
+δ$x = + ⋅ − ⋅ − ⋅− ∗ −δ δk k k k k k k$ ( $ )x K z H x H x (State Estimate Update)

k k k k
+ −= − ⋅ ⋅P I K H P( ) (Covariance Estimate Update)

The 2-D body-system components of the deterministic vector [ ]d
b b T

u a= ωω - from the dynamic

state equations (eq. 7, 12, 13, 16) - are computed using eq. (3) with the values of the components of
the specific force vector a ( x ya a,  in [cm/s²]) and by direct scaling of the voltage signal output from

the z-axis gyroscope (to obtain the angular rate z
bω  [rad/s]). The conversion from the measured

output voltages (U [V]) (of the x/y accelerometer channels and of the z-gyroscope channel), with the
appropriate scaling, offset and non-orthogonality corrections, to ab  and ωωb  is:
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and            (20)
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π
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180

_ _ _ _ ( _ _ _ _ _ ) .            (21)

  a.   b.
Fig. 12  Integrated solution for the x-component

a - carrier phase - DGPS solution, update every 4 s
b - pseudorange - DGPS solution, update every second



As typical error standard deviations we considered for this application the following initial values,
which enter into the error covariance matrices: for the system noise covariance matrix kQ
(assuming no correlation between the states) the initial values are assumed to be:

0
2 2 2 2 2Q = diag s x s y v x v y z( , , , , )_ _ _ _ _σ σ σ σ σψ  with: s x s y_ _σ σ= = 5 [m], v x v y_ _σ σ= = 2 [m/s], ψσ _z = 0,01

[rad]; for the observation error covariance matrix kR  we have taken a different set of values,
differently weighing the model of the states/observation equation set of the Kalman filter. For the
accuracy check of the integrated solution we have considered a diagonal matrix (without
correlations between the observed states) with the structure: k s x s y v x v y zdiagR = ( , , , , )_ _ _ _ _

2 2 2 2 2σ σ σ σ σψ ,

with elements: s x s y_ _σ σ= = .01 [m], v x v y_ _σ σ= = 0.01 [m/s], ψσ _z = 0,001 [rad].

Although one could assume an infinite precision of the measurement for the initial phase of rest, we
used finite values for the kR  terms, for algorithm stability reasons. The initial guess for the state

covariance matrix 0
−P  was the diagonal matrix 0 0 01 0 01 0 0001 0 0001 0 00001− =P diag ( , ; , ; , ; , ; , ) -

assuming also no correlation between the states. Performing in advance the alignment corrections,
we have considered zero initial conditions for the dynamic system at rest: 0 0 0 0 0 0− =x [ ]T .
We used the van Loan algorithm [18] to update the system noise covariance matrix Q. To keep the
symmetry of the positive-definite covariance matrix P, we enforced symmetry at each step of the
algorithm. The prediction solution is computed with the speed of the sampling rate (0.04 s).
By using an EKF (Extended Kalman Filter) during the alignment phase, one can determine
accurately the biases and the scale-factors of the inertial sensors (accelerometers and gyroscopes);
after a short transient period, one obtains the values of those quantities.

Fig. 13  Evolution of the
standard deviations for the
LKF solution with DGPS
aiding (updating every
second)
(x-axis divisions represent
epochs of . 04 s)

Because of the relatively
good fit of the 1 s aided LKF
solution, we represent only
the 4 s update solution (Fig.
12-a, for the x - component).
In the figure are displayed
the IMU strapdown solution

- that is the reference trajectory for the LKF implementation -, the carrier phase DGPS high
precision solution and the integrated global KF solution; one can see the characteristic aspect of the
updating/estimation sequences. In Fig. 12-b  a LKF solution is presented for the same x component
with updates via a (simulated) pseudorange DGPS aiding.
Fig. 13 presents the evolution of the standard deviation (obtained as the square root of the
appropriate diagonal terms of the covariance matrix P) of the principal state variables s, v for the
filter process given in Fig. 12 - b.
The x/y Kalman filter solution of the strapdown IMU with regular carrier phase DGPS aiding is
presented in Fig. 14, for both a 4 s update and a 1 s update.

σ position [m]

σ velocity [m/s]

σ accereration [m/s²]



    a.           b.

Fig. 14  GPS - aided trajectories (LKF integrated solution) in [m]
  a – update every 4 s;  b - update every 1 s

One can see that the 4 s solution is stronger perturbed than the 1 s solution and is no more
acceptable; it allows for example hardly to discriminate between the two sides of the street.

VI. Conclusions

In the paper some preliminary results are presented from a GPS-aided LKF integrated trajectory
solution for a low-cost strapdown mechanised IMU, using both precise carrier phase and
pseudorange DGPS solutions. The precise DGPS reference trajectory enables the elaboration of a
post-processing field evaluation methodology for the low-cost strapdown IMU. The obtained results
encourage to more comprehensive investigations: drift modelling of the inertial sensors in the
alignment procedure, calibration of the inertial sensors error sources and on-line navigation
solutions with an EKF update are considered. Our hardware time-tagging solution enabled a precise
absolute synchronisation of the two time-scales: of the GPS and of the IMU’s data acquisition. The
integration IMU/GPS has permitted accuracies at the meter level for one second DGPS updating
supported by the complementary nature of the error patterns of the IMU and of GPS. The precise
carrier-phase DGPS solution (without signal-interruptions), with its accuracy at the cm level,
provided a good reference for the performance evaluation of the strapdown mechanized IMU.
Because we were primarily interested to establish the integrated system feasibility, we have not
modelled too extensively the actual inertial sensors. We intend to extend our analysis in order to
achieve higher precision of the integrated solutions by the augmentation of the state variables set.
Accelerometer biases, gyroscope drifts and inertial sensor scale-factor errors could be included -
together with appropriate stochastic models - in order to better compensate for the systematic sensor
errors. Furthermore, an increase of the inertial data acquisition rate would permit a better
approximation of the non-linear dynamic model by a linear one. Finally, for a complete dynamic
model one could consider the g-variations and the influence of the earth rotation, which enables the
application of that analyse to more accurate IMUs, too.
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