

iVRU-FC-FF

Vertical Reference Unit with Fiber Optic Gyros, MEMS Accelerometers and integrated Strapdown Processor

iVRU-FC is an attitude heading reference system designed for stabilization and attitude heading reference tasks. It comes as an option with a fixation flange (iVRU-FC-FF).

measurement. The system provides digital data transmission (CAN, RS422, RS232). Additionally, the system can be connected with an external GPS

- Three rate gyros and three • accels
- < 0.003 deg/s bias stability
- high shock resistance due to FOG / MEMS technology
- CAN / RS232 / HDLC interfaces
- Sync Input / Output available •
- Navigation and Guidance •

iVRU-FC is a three axes system containing rugged fiber optic gyroscopes, three MEMS accelero-

meters and as an option one incremental encoder interface for turret angle feedback or vehicle velocity engine (NMEA GGA / VTG /

HDG and PPS signal input). Optionally, the system contains an internal L1 GPS receiver already. As a further option an external magnetometer can be connected. Qualification according to MIL-STD-810F and MIL-STD-461E. iVRU-FC-FF provides a grounding bush; a GORE membrane vent is standard for all units. The power supply is protected against voltage drops, overvoltage and high voltage lightning.

The iVRU-FC-FF is free of export license requirements.

	Gyro Performance	Accel Performance
Sensor Range:	± 200 °/s	± 2 / 10 / 30 g
Bias	< 0.003 °/s (const. temp., short time stability)	< 0.5 / 1 / 5 mg
	< 0.01 °/s (OTR, long-term bias, 1 sigma)	< 5 / 10 / 30 mg (typ. 0.1% of range)
Resolution:	< 0.001 °/s	< 0.1 mg
Linearity / Scale error:	< 0.2 % / < 0.2 %	< 0.3 % / < 0.3 %
Noise (0-200 Hz):	< 0.1 °/√h (6 °/h/√Hz)	< 60 / 200 / 1000 µg/√Hz
Bandwidth:	0200 Hz (option: 300 Hz)	0200 / 200 / 100 Hz (depends on rang
g-sensitivity:	none	
Attitude / rel. Heading Range:	\pm 180 ° Roll, \pm 90 ° Pitch, \pm 180 ° relative or magnetic heading or course over ground	
Attitude Accuracy:	< 0.3 / 1.0 / 2.5 ° roll/pitch in static or linear unaccelerated motion	
	1 ° roll/pitch under dynamic flight condition, using NoA ² algorithm	
	(unaided mode) or with velocity aiding (e.g. GP	S / odometer option)
Attitude short time stability:	< 0.1 over 10 sec (ioi, pitch, assumes proper velocity along) dependence an along (if any GPS and/or 3D magnetometer $> 0.2, 3.9$)	
Position / Velocity:	depends on GPS: ~ 20 m (S/A off) ~ 0.5 m/s [if GPS available]	
Attitude / Heading Resolution:		
Output:	$\omega_{\rm m}$ $\omega_{\rm m}$ $\omega_{\rm m}$ $a_{\rm m}$ $a_{\rm m}$ $a_{\rm m}$ (rate and acceleration). F	Roll, Pitch, rel, or mag. Heading or
ouput	COG: PBIT. CBIT. IBIT: options: heave output. magnetometer/GPS aiding:	
Digital Resolution:	> 18 bit (gyroscope and accelerometer digitalization)	
Digital Interfaces:	RS422 asynchronous, 9.6115.2 kBd, CAN; Sync-Trigger-Input/Output	
Integrated Options:	Standard L1 GPS; odometer (RS422 level, A/B) and magnetometer interface	
Analog Interface (Option)	05 V or \pm 5V or \pm 10 V (range is factory set; compensated output)	
Output Data Rate, Connector:	200 Hz via RS422; MIL-C-38999 III	
Temperature, Shock, Vibration:	-30+63°C (case temperature; oper.), endurance: 50 g, 11 ms, 6 g rms (102000 Hz) option: -40+71°C (case temperature; operational) ; -55+85°C (storage)	
Bonding Performance [-FF]:	< 2.5 mOHM	
Power, Start-up-Time; MTBF:	1134 V DC; approx. 12 W; < 1 sec; 20'000 h	@ 30 °C
Size:	120 x 120 x 130 mm [-FF version (flange): 152.	4 x 127 x 130 mm]
Woight Protoction Auglification	annov 1750 grams [-EE: 1850 grams] IP 68 /	helicopter qualified (MIL-STD 810F)

Phone: +49-(0)-6894-9657-0 • Fax: +49-(0)-6894-9657-22 www.imar-navigation.de • sales@imar-navigation.de

Typical Application of the IMUs and AHRS of type iVRU-Fx:

- Gun Stabilisation Tasks
- Attitude Heading Reference for Missile Attack Warning Systems
- AHRS for Unmanned Aerial Vehicles (UAV)
- Dynamic Motion Analysis of Airborne Vehicles, Power Boats etc.
- Motion Reference for Stabilised Platforms

References:

- EADS
- Rheinmetall

